Rashba splitting of graphene-covered Au(111) revealed by quasiparticle interference mapping
نویسندگان
چکیده
We report on low-temperature scanning tunneling spectroscopy measurements on epitaxial graphene flakes on Au(111). We show that using quasiparticle interference (QPI) mapping, we can discriminate between the electronic systems of graphene and Au(111). Beyond the scattering vectors, which can be ascribed to the elastic scattering within each of the systems, we observe QPI features related to the scattering process between graphene states and theAu(111) surface state. This additional interband scattering process at the graphene/Au(111) interface allows the direct quantitative determination of the Rashba-splitting of the Au(111) surface state, which cannot be evaluated from QPI measurements on pure Au(111). This experiment demonstrates a unique local spectroscopic approach to investigate the Rashba-split bands at weakly interacting epitaxial graphene/substrate interfaces.
منابع مشابه
Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)
We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that th...
متن کاملUnravelling the mechanisms of giant spin-orbit splitting in graphene on metals
Weak interaction between graphene and metals tends to preserve the graphene’s characteristic Dirac cones almost intact in the band structure. However, recently it has been shown in experiments that even in case of very weak graphene/substrate coupling the presence of a heavy 5d metal can induce giant spin-orbit splitting (SO) of Rashba type in the graphene’s π bands, although the intrinsic SO c...
متن کاملRashba-type spin splitting and spin interference of the Cu(111) surface state at room temperature
We report on the measurement of the Rashba-type spin splitting of the Shockley surface state on Cu(111) by spinand angle-resolved photoemission at room temperature. Along the spatial direction expected for a Rashba-type effect the measured spin splitting corresponds to what has previously been reported by first principle calculations which were verified by high resolution ARPES using low temper...
متن کاملSurface alloy engineering in 2D trigonal lattice: giant Rashba spin splitting and two large topological gaps
Wedemonstrate that sp based trigonal lattice can exhibit giant Rashba splitting and two large topological gaps simultaneously. First, an effective tight bindingmodel is developed to describe the Rashba spin–orbit coupling (SOC) on a real surface and give a topological phase diagrambased on two independent SOCparameters. Second, based on density functional theory calculations, it is proposed tha...
متن کاملTunable Fermi level and hedgehog spin texture in gapped graphene
Spin and pseudospin in graphene are known to interact under enhanced spin-orbit interaction giving rise to an in-plane Rashba spin texture. Here we show that Au-intercalated graphene on Fe(110) displays a large (∼230 meV) bandgap with out-of-plane hedgehog-type spin reorientation around the gapped Dirac point. We identify two causes responsible. First, a giant Rashba effect (∼70 meV splitting) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014